

Science Biology 2nd Nine Weeks

This academic overview can be used to monitor and support your child's at

-home learning progress.

Unit 4: The Cell Cycle

Student Learning Targets

- I can describe the stages of the cell cycle.
- I can describe DNA replication.
- I can describe the process of mitosis.
- I can describe the the importance of the cell cycle to the growth of organisms.

Questions to Check for Unit Understanding

- What are the stages of interphase?
- What are the stages of cell division?
- What happens with cells that have errors in the cell cycle?

Key Academic Vocabulary

- Cancer: a disease resulting from the uncontrolled growth and division of the cells of a multicellular organism
- Cell Cycle: the process by which cells grow and divide to produce more cells
- Mitosis: the phase of the eukaryotic cell cycle in which a single cell divides into two cells
- Interphase: the longest phase of the cell cycle, in which the cell will grow larger and replicate its DNA in order to prepare for cell division

Unit 5: The Role of Nucleic Acids and Protein Synthesis

Student Learning Targets

- I can identify the components of DNA.
- I can identify how information for specifying traits of an organism is carried on the DNA.
- I can identify the different types of changes in DNA.
- I can illustrate the different types of changes in DNA.
- I can evaluate the significance of the changes in DNA.

Questions to Check for Unit Understanding

- What are the components of DNA?
- How can an organism have identical DNA in all cells, but the individual cells can have different appearances and functions?
- Why is the genetic code common to all organisms?
- What is the ultimate purpose of DNA?
- How do proteins control DNA?

Key Academic Vocabulary

- Chromosome: a structure made of DNA that contains the genetic information in the form of genes needed to carry out cell functions
- Nucleic Acid: a nucleotide polymer capable of storing and transferring genetic information
- Nucleotide: a molecule made of a sugar, a phosphate, and a nitrogenous base; the monomer of nucleic acid

Unit 6: Genetics and Epigenetics

Student Learning Targets

- I can differentiate between genotypes and phenotypes.
- I can use a pedigree to predict genetic outcomes.
- I can predict genetic outcomes of non-Mendelian inheritance.

Questions to Check for Unit Understanding

- What is the benefit of meiosis on the population?
- How can offspring not share the phenotype of their parents?
- How is the phenotype expressed?
- How would epigenetics benefit an organism?
- How would epigenetics make identifying the genotype of an organism more challenging?
- What is the benefit of genetic counseling?

Key Academic Vocabulary

- Meiosis: cell division that results in the production of haploid gametes: sperm and eggs
- Trait: a distinct characteristic of an organism, which may or may not be inheritable
- Genotype: the genetic makeup of an organism

Science Chemistry 2nd Nine Weeks

This academic overview can be used to monitor and support your child's at

-home learning progress.

Unit 3: Chemical Bonding & Chemical Formulas

Student Learning Targets

- I can differentiate between ionic and covalent bonds.
- I can write formulas for ionic and covalent compounds.
- I can write formulas for acids and bases.

Questions to Check for Unit Understanding

- Why do bonds form?
- How do bonds form?
- Why do standardized naming and formula-writing conventions exist for chemical compounds?
- How do chemical names and chemical formulas communicate information differently and similarly?

Key Academic Vocabulary

- Chemical Formula: a shorthand notation that uses chemical symbols and numbers as subscripts to represent the type of atoms and number of atoms that are present in the smallest unit of the substance
- Ionic Bond: a form of chemical bond that is characterized by the electrostatic attraction that binds oppositely charged ions together
- Covalent Bond: a form of chemical bond that is characterized by the sharing of pairs of electrons between atoms

Unit 4: Chemical Equations & Reactions

Student Learning Targets

- I can write a chemical equation for a word equation and balance it.
- I can describe the different types of chemical equations expressing different types of reactions.
- I can classify chemical equations.

Questions to Check for Unit Understanding

- How do you balance a chemical equation?
- How does a balanced chemical equation support the Law of Conservation of Matter?
- How do differentiate a single replacement reaction and a double displacement reaction?
- How do distinguish a synthesis reaction from a decomposition reaction?
- Why do we classify chemical reactions?
- Can a chemical reaction be classified as more than one type of reaction?

Key Academic Vocabulary

- Law of Conservation of Mass: a law stating that mass is conserved and is neither created nor destroyed in a chemical reaction; the total mass of the reactants equals the total mass of the products.
- Balanced Chemical Reaction: a chemical equation in which mass is conserved and each side of the equation has the same number of atoms of each element

Unit 5: The Mole and Avogadro's Number

Student Learning Targets

- I can calculate the molar mass of a pure substance.
- I can calculate the number of representative particles in 20.0 moles of pure substance.
- I can identify the components necessary to calculate the percent composition.
- I can recognize the difference between an empirical formula and a molecular formula of a compound.

Questions to Check for Unit Understanding

- How do chemists count atoms, molecules, formula units and ions in a sample of matter if the particles are too small and numerous to see?
- What is the relationship between atomic mass units and grams for a pure substance of matter?

Key Academic Vocabulary

- Avogadro's Number: expressed as 6.02 x 10²³; the number of representative particles contained in one mole of a substance
- Molar Mass: a general expression used to refer to the mass (in grams) of a mole of any substance, expressed as grams
 per mole, or g/mol
- Mole: the SI unit used to describe the number of particles (atoms, molecules, ions) of a substance that are present in a sample

Science Physics 2nd Nine Weeks

This academic overview can be used to monitor and support your child's at

-home learning progress.

Unit 4: Gravity and Circular Motion

Student Learning Targets

- I can create a diagram of circular motion using acceleration and velocity vectors.
- I can calculate the acceleration patterns of an orbiting body using its speed and radius of orbit.

Questions to Check for Unit Understanding

- How is motion in a non-inertial reference frame (like circular motion) similar/different to motion in an inertial reference frame (like one-dimensional and projectile motion)?
- How can objects in circular motion have a constant tangential speed but non-constant tangential velocity?
- How do the mass of objects and the distance separating them affect the gravitational force between them?
- How do the four fundamental forces compare in terms of their relative magnitudes and the ranges over which they act?
- If we encounter a force, how do we know which of the four fundamental forces it is?

Key Academic Vocabulary

- Centripetal Force: the net force acting on an object moving in a curved path that accelerates the object toward the center of the path's curvature
- Projectile: an object moving through space that has gravity as the only force acting upon it
- Gravitational Force: a force of attraction between two masses
- Newton's Law of Universal Gravitation: the law stating that every piece of matter is attracted to every other piece of matter; the force
 is directly proportional to their masses but inversely proportional to the square of the distance between them.

Unit 5: Impulse and Conservation of Momentum

Student Learning Targets

- I can illustrate the vector forces and accelerations of objects that are bouncing against surfaces or of objects that are colliding with each other.
- I can calculate force, acceleration, and mass of objects with momentum using Newton's Second Law.
- I can calculate the impulse applied to an object.

Questions to Check for Unit Understanding

- In what conditions is momentum conserved/not conserved?
- What characterizes an elastic/inelastic collision and what laws of conservation apply to collisions?
- How is momentum connected to Newton's Second Law?
- What is the relationship between impulse and momentum?

Key Academic Vocabulary

Law of Conservation of Momentum: a law stating that for collisions in a closed system, the total momentum remains the same

Unit 6: Energy and its Conservation

Student Learning Targets

- I can define and describe the law of conservation of energy.
- I can verbally describe the energy transformations occurring in an energy transformation sequence.
- I can calculate various quantities such as the velocity, height, mass, etc. of an object/system as it undergoes an energy transformation from one form of mechanical energy to another or as work is done on it/by it.

Questions to Check for Unit Understanding

- What does it mean that energy is conserved?
- What are the main forms of humanly useful/non-useful energy?
- How does the flow and storage of energy affect the ability of objects/agents to do work?
- How does the idea of energy efficiency relate to the law of conservation of energy?

Key Academic Vocabulary

• Law of Conservation of Energy: a law stating that energy cannot be created or destroyed—it can only change forms

Science Environmental Systems 2nd Nine Weeks

This academic overview can be used to monitor and support your child's at

-home learning progress.

Unit 3: Environmental Resources & Systems

Student Learning Targets

- I can define waste management methods, such as reduction, reuse, recycling, and composting.
- I can evaluate the impact of waste management methods on resource availability.

Questions to Check for Unit Understanding

- What are the methods for land and water management?
- What methods are land use and management?
- What are nonrenewable and renewable resources?
- What are the impacts of waste management on the environment?

Key Academic Vocabulary

- Reduction: the action of utilizing less in amount, degree, or size
- Composting: organic matter that has been decomposed
- Waste: unwanted or unusable materials

Unit 4: Energy Flow & Interactions

Student Learning Targets

- I can define and identify the components of the geosphere, hydrosphere, cryosphere, atmosphere, and biosphere.
- I can define and identify the interactions among the components of the geosphere, hydrosphere, cryosphere, atmosphere, and biosphere.
- I can describe and compare renewable and non-renewable energies.

Questions to Check for Unit Understanding

- What are the components of the geosphere, hydrosphere, cryosphere, atmosphere, and biosphere?
- What are the interactions among the components of the geosphere, hydrosphere, cryosphere, atmosphere, and biosphere?
- What is the difference between nonrenewable and renewable resources?

Key Academic Vocabulary

- Renewable: Materials from Earth that can be replaced by nature within a short amount of time
- Nonrenewable: resources that cannot be replaced by natural processes within a lifetime

Unit 5: Natural Patterns in Environment

Student Learning Targets

- I can define the natural process of succession.
- I can define the natural processes of feedback loops.
- I can examine how succession and feedback loops restore habitats and ecosystems.

Questions to Check for Unit Understanding

- What are the effects on areas impacted by natural events?
- What are regional changes to the environment and what are their global effects?
- What is succession and does it restore the environment?
- What are feedback loops and how do they restore the ecosystem?

Key Academic Vocabulary

- Ecological Succession: the gradual process by which ecosystems change and develop over time
- Feedback Loops: the return of information about a system or process that may affect a change in the system or process